CODS - Journal of Dentistry

Register      Login

VOLUME 8 , ISSUE 2 ( 2016 ) > List of Articles

ORIGINAL ARTICLE

Microhardness Test to evaluate the Effect of Chelating Agents on the Superficial Layer of Root Canal Lumen Dentin

Vasundhara Shivanna, Sharil Pottanchaliyil

Keywords : Chelators, Dentin microhardness, Ethylenediaminetetraacetic acid, Irrigants

Citation Information : Shivanna V, Pottanchaliyil S. Microhardness Test to evaluate the Effect of Chelating Agents on the Superficial Layer of Root Canal Lumen Dentin. CODS J Dent 2016; 8 (2):104-107.

DOI: 10.5005/jp-journals-10063-0021

License: CC BY-NC-ND 3.0

Published Online: 01-06-2018

Copyright Statement:  Copyright © 2016; The Author(s).


Abstract

Aim: The aim of the present study was to compare the effects of different chelating agents on the microhardness of the most superficial layer of root canal lumen dentin. Materials and methods: Forty-two extracted single-rooted teeth were instrumented, and the roots were longitudinally sectioned in a buccolingual direction to expose the entire root canal extension. The specimens were distributed into five groups according to the different chelating agents used: 15% ethylenediaminetetraacetic acid (EDTA) solution, 15% EDTA gel, 10% citric acid, 5% malic acid, and control [no irrigation (n=2)]. A standard volume of 50 ìL of each chelating agent was used for 5 minutes. Dentin microhardness was measured with a Vickers indenter under a 50 gm load and a 15 second dwell time. Data were analyzed statistically by one-way analysis of variance and post hoc multiple comparison test at 5% significance level. Results: Ethylenediaminetetraacetic acid solution, EDTA gel, and citric acid had the greatest overall effect causing decrease in dentin microhardness without a significant difference (p>0.05) from each other. However, these chelating agents differed significantly with malic acid (p<0.05). Conclusion: All tested chelating solutions reduced microhardness of the most superficial root canal dentin layer. Ethylenediaminetetraacetic acid and citric acid were the most efficient.


PDF Share
  1. Saleh AA, Ettman WM. Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dent 1999 Jan;27(1):43-46.
  2. Cruz-Filho AM, Sousa-Neto MD, Savioli RN, Silva RG, Vansan LP, Pécora JD. Effect of chelating solutions on the microhardness of root canal lumen dentin. J Endod 2011 Mar;37(3):358-362.
  3. Cathro P. The importance of irrigation in endodontics. Contemp Endod 2004;1:3-7.
  4. McComb D, Smith DC. A preliminary scanning electron microscopic study of root canals after endodontic procedures. J Endod 1975 Jul;1(7):238-242.
  5. De-Deus G, Paciornik S, Mauricio MH. Evaluation of the effect of EDTA, EDTAC and citric acid on the microhardness of root dentine. Int Endod J 2006 May;39(5):401-407.
  6. Ari H, Erdemir A, Belli S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J Endod 2004 Nov;30(11):792-795.
  7. Haapasalo M, Shen Y, Qian W, Gao Y. Irrigation in endodontics. Dent Clin North Am 2010 Apr;54(2):291-312.
  8. Arends J, Ten Bosch JJ. Demineralization and remineralization— evaluation techniques. J Dent Res 1992 Apr;71(4):924-928.
  9. Patterson SS. In vivo and in vitro studies of the effect of the disodium salt of ethylene diamine tetra acetate on human dentin and its endodontic implications. Oral Surg Oral Med Oral Pathol 1963 Jan;16:83-103.
  10. Hulsman M, Heckendroff M, Lennon A. A review—chelating agents in rootcanal treatment: mode of action and indication for their use. Int Endod J 2003 Dec;36(12):810-830.
  11. Agrawal Vineet S, Rajesh M, Sonali K, Mukesh P. A contemporary overview of endodontic irrigants—a review. J Dent App 2014;1(6):105-115.
  12. Voguel, AI. Textbook of quantitative chemical analysis. 6th ed. New York: John Wiley & Sons; 2004.
  13. Spanó JC, Silva RG, Guedes DF, Sousa-Neto MD, Estrela C, Pécora JD. Atomic absorption spectrometry and scanning electron microscopy evaluation of concentration of calcium ions and smearlayer removal with root canal chelators. J Endod 2009 May;35(5):727-730.
  14. Lertchirakarn V, Palamara JE, Messer HH. Load and strain during lateral condensation and vertical root fracture. J Endod 1999 Feb;25(2):99-104.
  15. Yoldas O, Yilmaz S, Atakan G, Kuden C, Kasan Z. Dentinal microcrack formation during root canal preparations by different NiTi rotary instruments and the self-adjusting file. J Endod 2012 Feb;38(2):232-235.
  16. Arbab-Chirani R, Chevalier V, Arbab-Chirani S, Calloch S. Comparative analysis of torsional and bending behavior through finite-element models of 5 Ni-Ti endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011 Jan;111(1):115-121.
  17. Adorno CG, Yoshioka T, Suda H. The effect of working length and root canal preparation technique on crack development in the apical root canal wall. Int Endod J 2010 Apr;43(4):321-327.
  18. Liu R, Hou BX, Wesselink PR, Wu MK, Shemesh H. The incidence of root microcracks caused by 3 different singlefile systems versus the ProTaper system. J Endod 2013 Aug;39(8):1054-1056.
  19. Varela-Patiño P, Ibañez-Párraga A, Rivas-Mundiña B, Cantatore G, Otero XL, Martin-Biedma B. Alternating versus continuous rotation: a comparative study of the effect on instrument life. J Endod 2010 Jan;36(1):157-159.
  20. Gergi RM, Osta NE, Naaman AS. Dentinal crack formation during root canal preparations by the twisted file adaptive, Reciproc and WaveOne instruments. Eur J Dent 2015 Oct-Dec; 9(4):508-512.
  21. Williams RC, Offenbacher S. Periodontal medicine: the emergence of a new branch of periodontology. Periodontol 2000. 2000 Jun;23(1):9-12.
  22. Vandana KL, Mahajan N, Savitha B. Knowledge, attitude, and practices of interdental aids among medical professionals in Davangere district, Karnataka. J Int Clinic Dent Res Organ 2015;7(1):39.
  23. Svanberg G, Lindhe J. Experimental tooth hypermobility in the dog. Odontol Revy 1973;24(3):269-282.
  24. Nyman S, Lindhe J, Ericsson I. The effect of progressive tooth mobility on destructive periodontitis in the dog. J Clin Periodontol 1978 Aug;5(3):213-225.
  25. Buckland-Wright JC. Bone structure and pattern of force transmission in the cat skull. J Morphol 1978 Jan;155(1):35-61.
  26. Comar MD, Kollar JA, Garguilo AW. Local irritation and occlusal trauma as co-factors in the periodontal disease process. J Periodontol 1969 Apr;40(4):193-200.
  27. Svanberg G. Influence of trauma from occlusion on the periodontium of dogs with normal or inflamed gingiva. Odontol Revy 1974;25(2):165-178.
  28. Bourauel C, Freudenreich D, Vollmer D, Kobe D, Drescher D, Jager A. Simulation of orthodontic tooth movements. A comparison of numerical models. J Orofac Orthop 1999 Jan;60(2):136-151.
  29. Vollmer D, Bourauel C, Maier K, Jager A. Determination of the centre of resistance in an upper human canine and idealized tooth model. Eur J Orthod 1999 Dec;21(6):633-648.
  30. Provatidis CG. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Med Eng Phys 2000 Jun;22(5):359-370.
  31. van Driel WD, van Leeuwen EJ, Von den Hoff JW, Maltha JC, Kuijpers-Jagtman AM. Time-dependent mechanical behaviour of the periodontal ligament. Proc Inst Mech Eng H 2000 Sep;214(5):497-504.
  32. Qian H, Chen J, Katona TR. The influence of PDL principal fibers in a 3-dimensional analysis of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2001 Sep;120(3):272-279.
  33. Pietzrak G, Curnier A, Botsis J, Scherrer S, Wiskott A, Belser U. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility. Comput Methods Biomech Biomed Engin 2002 Apr;5(2):91-100.
  34. Poppe M, Bourauel C, Jager A. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted tooth. A study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 2002 Sep;63(5):358-370.
  35. Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005 May;84(5):428-433.
  36. Ericsson I, Lindhe J. Lack of significance of increased tooth mobility in experimental periodontitis. J Periodontol 1984 Aug;55(8):447-452.
  37. Parfitt GJ. Measurement of physiologic mobility of individual teeth in an axial direction. J Dent Res 1960 May-Jun;39:608-618.
  38. Picton, DCA. The effect of extraoral forces on the periodontium. In: Melcher AH, Bowen WH, editors. Biology of the periodontium. London: Academic Press; 1969. pp. 363-419.
  39. Khoo KK, Watts TL. Upper anterior tooth mobility: selected associations in untreated periodontitis. J Periodontol 1988 Apr;59(4):231-237.
  40. Burstone, CJ. The biomechanics of tooth movement. In: Kraus BS, Reidel RA, editors. Vistas in orthodontics. Philadelphia (PA): Lea & Febiger; 1962. pp. 197-213.
  41. Burstone, CJ. Application of bioengineering to clinical orthodontics. In: Graber TM, Swain BF, editors. Orthodontics: current principles and techniques. St. Louis (MO): CV Mosby; 1985. pp. 193-228.
  42. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 1980 Apr;77(4):396-409.
  43. Tanne K, Koenig HA, Burstone CJ. Moment to force ratios and the centre of rotation. Am J Orthod Dentofacial Orthop 1988 Nov;94(5):426-431.
  44. Burstone, CJ. The biophysics of bone remodelling during orthodontics—optimal force consideration. In: Norton LA, Burstone CJ, editors. The biology of tooth movement. Boca Raton (FL): CRC Press; 1989. pp. 321-333.
  45. Tanne K, Nagataki I, Inouse Y, Sakuda M, Burstone CJ. Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. Am J Orthod Dentofacial Orthop 1991 Jul;100(1):66-71.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.